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We study single- and two-electron parabolic quantum dots in the presence of linear Dresselhaus and Rashba
spin-orbit interactions. Contributions of both types of spin-orbit coupling are investigated in the context of the
spin polarization of the system at high magnetic fields. We demonstrate that for negative Landé factors the
effect of the Dresselhaus coupling is suppressed at high magnetic field, which for structures without inversion
asymmetry leads to a completely spin-polarized system and a strict antisymmetry of the wave functions with
respect to the interchange of spatial-electron coordinates. For negative Landé factor the Rashba coupling is
preserved at high field and consequently the spin polarization of the systems as well as the spatial antisym-
metry of the two-electron wave function remain approximate.
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I. INTRODUCTION

In quasi-two-dimensional semiconductor systems inver-
sion asymmetry of the potential profile in the growth direc-
tion introduces spin-orbit �SO� interaction for the confined
carriers known as structure-asymmetry-induced or Rashba
coupling.1 Moreover, in III-V’s and II-VI’s the inversion
asymmetry of the crystal lattice introduces SO coupling of
the Dresselhaus2 type. Coupling of the spin and orbital de-
grees of freedom is an important issue for quantum informa-
tion processing applications based on spins of electrons con-
fined in quantum dots.3 In particular, the SO coupling can be
used to accompany the orbital electron movement by the
rotations of its spin.4,5 The SO coupling allows also for spin
rotations of localized electrons subject to oscillating electric
fields.6 In the context of the two-qubit operations the SO
coupling introduces anisotropy in the exchange interaction7,8

which allows for the construction of universal quantum gates
without single-spin rotations.8

The initial and final states of a quantum gate should pref-
erably correspond to quantum-dot-confined stationary states
with a definite spin orientation. However, the SO coupling
leads to decay of the spin polarization.9 For two-electron
quantum dots this amounts in the triplet-singlet relaxation.10

The relaxation of the spin-polarization results from the fact
that in the presence of the SO coupling no component of the
spin is a good quantum number. In other words in stationary
dot-confined states the spin orientation can be only approxi-
mately but not strictly defined. The effect of the SO coupling
for stationary states was studied in a number of theoretical
papers,10–16 which �except the issues mentioned above� ana-
lyzed opening of avoided crossings between energy levels of
definite spin and orbital momenta and their consequences for
the optical spectrum or magnetization of the system.

In transport experiments17 which probe the ground-state
properties of confined systems, usually both types of SO
coupling are present and the separation of their relative con-
tribution is difficult.18 The purpose of the present paper is to
establish the role of both types of SO coupling in the context

of the ground-state spin polarization at high magnetic field
and the separability of spin and spatial degrees of freedom. A
special attention is paid to the Zeeman effect which favors
one of the spin orientations. The spin-orbit coupling effects
should be completely suppressed provided that the Zeeman
interaction perfectly polarizes the confined spins. The main
message of the present work is that at high magnetic field for
the Landé factor g�0 the effect of the Dresselhaus coupling
is suppressed by the Zeeman interaction but the effect of the
Rashba coupling is preserved.

Quantum dot properties at high magnetic field and in the
absence of the SO coupling are often described in the ap-
proximation of spinless �spin-polarized� electrons19–23 with
wave functions that are strictly antisymmetric with respect to
the exchange of the electron spatial coordinates. In quantum
dots the SO coupling—when present—excludes complete
spin polarization of the electron system and conversely the
complete spin polarization may be achieved only at the ex-
pense of the suppression of the SO effects. We show below
that for g�0 at high field �i� for systems without structural
inversion asymmetry the spin-up polarization of the ground
state becomes complete and consequently, �ii� the wave func-
tion becomes strictly antisymmetric with respect to exchange
of the electron spatial coordinates, and �iii� the Rashba cou-
pling is preserved at high field and consequently for struc-
tures with inversion asymmetry the spin polarization remains
incomplete and the spatial wave-function antisymmetry is
only approximate.

This paper is organized in the following way. The theory
is given in the second section. Sections III and IV contain
results for one and two electrons. Summary and conclusions
are provided in Sec. V.

II. THEORY

We consider the effective mass single-electron Hamil-
tonian of the form
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H = h0 + HR + HD, �1�

where h0 stands for the Hamiltonian of the electron in a
two-dimensional parabolic quantum dot for perpendicular
magnetic-field B without the SO coupling

h0 = � p2

2m�
+

m��2r2

2
�1 +

1

2
g�BB�z, �2�

with 1—the 2�2 identity matrix and p=−i��+eA, where
e�0 is the elementary charge. The symmetric gauge A
= B

2 �−y ,x ,0� and GaAs electron effective mass m�=0.063m0
are applied. �B the Bohr magneton and �’s stand for the
Pauli matrices. We consider parabolic quantum dot confine-
ment with ��=2 meV. The applied confinement corre-
sponds to large quantum dots with lateral confinement poten-
tial of an electrostatic origin.24

In Eq. �1� HR �HD� is the Rashba �Dresselhaus� coupling
term

HR = ���xpy − �ypx�/� , �3�

HD = 	��xpx − �ypy�/� , �4�

where � and 	 are the Rashba and Dresselhaus constants. In
this paper we neglect the cubic contribution to the Dressel-
haus coupling which for two-dimensional closed quantum
dots produces small effects25 as compared to the linear
Dresselhaus and Rashba terms. Linear Dresselhaus coupling
constant for the two-dimensional SO interaction can be de-
duced from the bulk coupling constant 
 and the height of
the quantum dot d 	= � �

d �2
. For GaAs coupling constant26


=27.5 eV Å3 and d=5 nm one obtains 	=10.8 meV nm.
In quantum dots the Rashba coupling constant—that is pro-
portional to the electric field in the growth direction—may
achieve values similar to the Dresselhaus constant.18 The re-
sults of the present paper were obtained for coupling con-
stants equal or smaller than 10.8 meV nm.

Below we consider mainly the case of pure Dresselhaus
coupling as well as pure Rashba coupling and the case of
equal coupling constants. In real structures usually the cou-
pling constants are not equal. For both couplings present the
Zeeman effect at high magnetic field leaves unaffected one
of the coupling types and suppresses the other irrespective of
the relative values of the two SO coupling constants. There-
fore, the results for the suppression of one of the SO cou-
pling types by the Zeeman effect presented below for equal
coupling constants are quite typical. On the other hand the
case of equal coupling constant in the absence of the mag-
netic field are of a particular interest for two-dimensional
quantum wells in which persistent spin-helix states were pre-
dicted to appear27 with infinite spin-relaxation times. The
persistent helix states were recently detected in an
experiment28 in which the Rashba coupling constant was
tuned to match the Dresselhaus constant with a voltage ap-
plied to a gate.

For structures built of GaAs/AlGaAs quantum wells the
value of g factor may be tuned by the width of the quantum
well,29 in particular g may be set to zero or positive values of
g can also be achieved. In the present paper we consider two
cases g=0 and g=−0.44 �bulk GaAs Landé factor�. Results

for positive g=+0.44 can be obtained from the ones pre-
sented below for g=−0.44 when one exchanges the coupling
constants ��	 and inverts the spin direction �z�−�z.

For pure Rashba coupling �	=0� and confinement poten-
tial of circular symmetry, Hamiltonian �1� commutes with
the total angular momentum operator J+=Lz+Sz, where Sz

= �
2 �z is the operator of the z component of the spin and L

=−i�1�r��� is the operator of the orbital angular momen-
tum. For pure Dresselhaus coupling good quantum numbers
are the eigenvalues of the total angular momentum defined
with an opposite contribution of the spin J−=Lz−Sz. In the
following when discussing the eigenstates for a single type
of SO coupling we will skip subscripts for J+ and J− eigen-
values. For pure Rashba coupling as well as for pure Dressel-
haus coupling both spin-up and spin-down wave-function
components have definite orbital angular momentum

� = ��l↑
�r�exp�il↑phi�

�l↓
�r�exp�il↓
� � �5�

with l↓= l↑+1 for the Rashba and l↓= l↑−1 for the Dressel-
haus coupling. When only a single type of SO coupling is
present it is convenient to put Hamiltonian �1� in cylindrical
coordinates and make use of the definite values of the orbital
angular momentum for both components to separate the ra-
dial and angular degrees of freedom. Then one obtains a
couple of radial eigenequations for each spin component to
be solved.11–13,30

For both types of SO coupling present the components of
the single-electron wave functions are no longer eigenstates
of the orbital angular momentum. However, each of the
wave-function components still has a definite parity with re-
spect to point inversion, i.e., both components are eigenstates
of the parity operator P �defined as Pf�r�= f�−r�, where f is
a scalar function�. This is because Hamiltonian �1� commutes
with Ps= P�z, which we will refer to as the s-parity operator.
The parities of the spin-up and spin-down components are
opposite. Below we refer to the eigenstates of Ps correspond-
ing to the eigenvalue +1�−1� as even �odd� s-parity states.

We solved the single-electron problem in the basis

�� = ���
↑

��
↓ � = �

nl

cnl
�↑��nl

0
� + �

nl

cnl
�↓� 0

�nl
� , �6�

where �nl are the eigenfunctions of the h0 operator, i.e., the
Fock-Darwin �FD� states

�nl =� n!

��n + 	l	�!� 1

lB
�	l	+1

r	l	 exp�il
�

�exp�− r2/2lB
2�Ln

	l	� r2

lB
2 � , �7�

with Ln
l —the Laguerre polynomials and lB=�� /m��h, corre-

sponding to h0 eigenvalues

Enl = ��h�2n + 	l	 + 1� +
1

2
��cl �

1

2
g�BB , �8�

where �h=��2+�c
2 /4, and �c=eB /m� is the cyclotron fre-

quency. The last term in Eq. �8� �the Zeeman-energy shift is
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taken with plus sign for the spin-up component and with
minus for the spin-down component�. Below we use a short-
ened notation �n , l ,s�, for s=↑ or s=↓ to describe the contri-
bution of the FD states to the SO wave functions.

The two-electron Hamiltonian

H2e = H�1� + H�2� +
e2

4���0r12
, �9�

with GaAs-dielectric constant �=12.9, is diagonalized in a
basis of antisymmetrized products of the single-electron
eigenfunctions of operator �1�,

� = �
�,���

d�,�����1,2� , �10�

with ����1,2�= 1
�2

����1����2�−���2����1��. In the present
paper we use all the basis functions that can be constructed
of the single-electron basis for FD states with n�2 and 	l	
�10. When constructing the two-electron basis for a single
type of SO coupling present, it is useful to exploit the con-
servation of the two-electron total angular momentum by the
Coulomb interaction. The eigenstates of Eq. �9� have a defi-
nite angular momentum J=J�1�+J�2�. The Coulomb interac-
tion conserves also the s-parity symmetry, hence the two-
electron stationary states are also eigenstates of the two-
electron Ps�1�� Ps�2� operator.

The problem of the single-electron problem can be solved
numerically using a few alternative methods. In particular we
verified the results presented below for the single-electron
problem using a finite-difference imaginary time technique
in which the eigenstates of SO coupling Hamiltonian are
found without any assumptions on the form of the variational
basis and in which an arbitrary precision may be achieved.
The basis of FD spin-orbitals—which naturally needs to be
truncated—was in fact introduced in order to solve the two-
electron problem. The single-electron functions as given by
the finite-difference technique are defined on a mesh of
points, which rather excludes the treatment of the two-
electron interaction integrals with a precision necessary to
describe the fine effects of the spin-orbit coupling. For that
reason we chose to work in a basis of Fock-Darwin spinors
given with analytical expressions. Moreover, the stable and
fast integration of the Coulomb-matrix elements for the
Fock-Darwin basis is widely discussed in the existing litera-
ture. In the present paper the integration is performed follow-
ing the procedure explained in Ref. 31. The truncated basis
sets the limit to the maximal angular momentum that can be
described with a satisfactory precision. Due to the ground-
state angular momentum transitions present in the two-
electron problem, the truncation of the basis limits the range
of the magnetic field which can be covered by the present
study. In the absence of SO coupling the quality of the varia-
tional basis can be verified against the results obtained with
separation of the center of mass. The variational overesti-
mate for the ground-state energy as obtained for the trun-
cated basis at B=15 T �ground-state angular momentum
l=−9� equals 0.68 �eV. The corresponding values for B
=16, 18, 20, and 23 T �ground-state l=−10,−11,−12,−14�
are 0.69, 1.7, 5.2, and 20 �eV, respectively. In the present

paper we limit our attention to two-electron states in the
magnetic fields up to 16 T, which is enough to describe the
problem of suppression of one the types of SO coupling by
the Zeeman effect.

It is sometimes useful32 to express the basis functions or
the two-electron wave function in a vector form with each
component corresponding to different orientations of the
spins of the first and second electron,

����1,2� =

��

↑ �1���
↑�2�

��
↑ �1���

↓�2�
��

↓ �1���
↑�2�

��
↓ �1���

↓�2�
� or � =


�↑↑�r1,r2�
�↑↓�r1,r2�
�↓↑�r1,r2�
�↓↓�r1,r2�

� .

�11�

From the fermion symmetry the exchange of the spatial and
spin coordinates of the electrons leads to inversion of the
sign of the wave function

P12� =

�↑↑�r2,r1�
�↓↑�r2,r1�
�↑↓�r2,r1�
�↓↓�r2,r1�

� =

− �↑↑�r1,r2�
− �↑↓�r1,r2�
− �↓↑�r1,r2�
− �↓↓�r1,r2�

� , �12�

where P12 is the electron exchange operator. In Sec. III for
the discussion of the spatial symmetry of the wave function,
we consider an operator R which exchanges only the
spatial—and not the spin—electron coordinates

R

�↑↑�r1,r2�
�↑↓�r1,r2�
�↓↑�r1,r2�
�↓↓�r1,r2�

� =

�↑↑�r2,r1�
�↑↓�r2,r1�
�↓↑�r2,r1�
�↓↓�r2,r1�

� . �13�

In the absence of SO coupling the two-electron Hamiltonian
eigenstates can be separated into products of spin and spatial
wave functions. The spatial wave functions are eigenstates of
the spatial exchange operator R. The spatial wave functions
for spin singlets are symmetric �+1 eigenvalue of R� and for
spin triplets they are antisymmetric �−1 eigenvalue of R�
with respect to the exchange of the spatial electron coordi-
nates. The ground-state wave function in the presence of SO
coupling is no longer an eigenstate of the R operator. The
mean value of the R approaches 1 �−1� for eigenstates with a
dominant singlet �triplet� contribution to the wave function.
Deviation of 	�R
	 from unity can be considered as a measure
of the nonseparability of the spin and spatial degrees of free-
dom.

III. SINGLE ELECTRON STATES

A. Single type of SO coupling, no Zeeman effect

In the absence of the Zeeman effect the energy spectra for
pure Rashba and pure Dresselhaus couplings are identical.
Moreover, for both types of SO coupling, the corresponding
energy levels of both spectra are labeled with the same val-
ues of the total angular momentum quantum number J=J+
for the Rashba coupling and J=J− for the Dresselhaus cou-
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pling. For the same quantum number J the eigenstates of J+
and J− correspond to the same energy and charge density.
The spin density for J+ can be obtained from the J− density
by inversion.

The lowest-energy levels corresponding to J=1 /2,
−1 /2,−3 /2, etc., are plotted in Fig. 1 with respect to the
lowest FD state, i.e., with respect to the ground-state energy
in the absence of the SO coupling. The coupling constant c
=10.8 meV nm is used—the results for the Rashba coupling
are obtained for �=c ,	=0 and the ones for the Dresselhaus
coupling for �=0,	=c. For J=−1 /2 in Fig. 1 we addition-
ally plotted the second-energy level, which becomes the
ground state when the Zeeman effect is included �see below�.
Note that the energy of the second J=−1 /2 state tends at
high field to the FD ground state �the ground state in the
absence SO coupling�. The J=1 /2 ground-state energy level
saturates at higher B and consequently the SO coupling en-
ergy defined as the difference of the ground-state energies
with and without SO coupling tends to a constant in the high
magnetic-field limit. In the Appendix we demonstrate that
SO coupling energy in the high magnetic-field limit is ap-
proximately equal to −2c2m� /�2, while the SO coupling at
B=0 is half smaller, as given by the numerical results of
Fig. 1.

We analyzed contributions of the FD states to the lowest-
energy J= �1 /2 states. The results are schematically given
for the Dresselhaus type of coupling in Fig. 2 which contains
a zoom of the low-energy part of the spectrum of Fig. 1 with
the labels of FD configurations �n , l ,s� which have dominant
contribution for the SO eigenstates. Size of the label indi-
cates relative importance of the contribution.33 In order to
explain the separate contributions it is useful to look at the z
components of the spin given in Fig. 3.34 The J=1 /2 ground

state is mainly a superposition of �0,0 ,↓� and �0,1 ,↑� states.
In particular at 0 T the FD contributions to the SO ground
state are 95.54% for �0,0 ,↓� and 4.4% for �0,1 ,↑�, while at
50 T the values are 99.79% and 0.2%, respectively. We see
that the �0,0 ,↓� FD state in the J=1 /2 SO ground state
becomes even more dominant with increasing magnetic field
�see Fig. 3�. Nevertheless the contribution of the other FD
state remains nonzero at high field �see the inset of Fig. 3�.
The remaining contribution of a spin-up state is necessary to
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FIG. 1. �Color online� Solid curves show the lowest-energy lev-
els corresponding to the total angular momentum quantum numbers
J=1 /2,−1 /2,−3 /2, . . . calculated for g=0 and with only a single
type of SO coupling present with coupling constant of c
=10.8 meV nm ��=c ,	=0 or equivalently �=0,	=c�. The energy
levels are calculated with respect to the lowest-energy FD level. For
J=−1 /2 we plot also the second-energy level �dashed curve�. The
dotted curves show the FD energy levels for l=0,−1, and −2 and
n=0.
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FIG. 2. �Color online� Zoom of the low-energy part of Fig. 1
where we additionally plotted �dotted curves� the lowest-energy J
= �1 /2 levels calculated in a basis where only the lowest Landau
levels �n=0 and l�0� are included. Main contributions of the FD
states to the lowest-energy J= �1 /2 states of Fig. 1 are given when
only the Dresselhaus coupling is present. We use �n , l ,s� notation,
where n is the main quantum number, l is the orbital momentum,
and s= ↑↓ is the orientation of the spin. The size of labels �n , l ,s�
for each energy level indicates the importance of the FD
contributions.
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FIG. 3. �Color online� Average z component of the spin for
J= �1 /2 energy levels in the presence of Dresselhaus coupling.
Applied parameters correspond to Figs. 1 and 2. In the inset square
of the average z component of the spin is plotted �the values are
identical for Rashba and Dresselhaus types of coupling�.
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maintain the SO coupling including the downshift in the en-
ergy with respect to the FD ground-state energy level �see
Fig. 1�. At B=0 the lowest-energy J=−1 /2 is degenerate
with the J=1 /2 ground-state energy level �Fig. 1� with an
inverted mean value of the z component of the spin �Fig. 3�.
Near 10 T the two lowest-energy J=−1 /2 levels enter into an
avoided level crossing �Fig. 1�. At the high field side of the
avoided crossing the dominant contribution to the lower-
energy J=−1 /2 state comes from �0,−1,↓� but with an ad-
mixture of �1,0 ,↑� FD state, which stays nonzero even with
increasing field �see the inset of Fig. 3—at 50 T the relative
contributions of these two states are 99.77% and 0.21%, re-
spectively�. We find that the second-energy J=−1 /2 state in
high B becomes a pure �0,0 ,↑� FD state and the admixtures
of the FD spin-down states disappear much faster than in the
two other discussed states �at 50 T the higher J=−1 /2 state
is 99.98% pure �0,0 ,↑� FD state�. For that reason the SO
coupling effects are totally lifted for the second-energy J
=−1 /2 state at high field which leads to the degeneracy with
the FD ground-state energy level �see Fig. 1�.

The lowest-energy J=1 /2 and J=−1 /2 states only pre-
dominantly correspond to the lowest spin-up FD energy
branch �n=0, l�0� tending to the lowest Landau level �LLL�
in B→� limit. However, they both contain significant con-
tributions of the spin-down states which preserve the pres-
ence of SO coupling also at high field. The SO energy satu-
rated at high B. Note that the spin-down states which
contribute to the lowest-energy J= �1 /2 states belong to the
second Landau level—with l=1 for J=1 /2 and with n=1 for
the lowest-energy J=−1 /2 state. Therefore, of the three
states discussed in the context of Figs. 2 and 3 only the
second-energy J=−1 /2 at high field can be strictly identified
with the lowest Landau level. In Fig. 2 we plotted by the
dotted curves the lowest-energy levels corresponding to J
= �1 /2 as calculated in the basis limited to the lowest Lan-
dau level �n=0, l�0�. The limitation of the basis to the low-
est Landau level removes completely the SO coupling for J
=1 /2. For the lowest-energy J=−1 /2 level the results within
the lowest Landau level approximation are qualitatively cor-
rect only at low field. Thus we conclude: for pure Rashba
and pure Dresselhaus SO coupling description of at least
certain lowest-energy states, including the ground state, re-
quires the inclusion of levels beyond the LLL, even at high
B.

B. Dresselhaus coupling in the presence
of the Zeeman effect

Figure 4 shows the spectrum for pure Dresselhaus cou-
pling with inclusion of the Zeeman effect �g=−0.44�. As
compared to the g=0 case of Fig. 1, the lowest-energy J=
−1 /2 which corresponds mostly to the �0,0 ,↑� FD state be-
comes the ground state around 7 T �see the energy level
crossing of J= �1 /2 levels�. Figure 4 shows that at the high
field the J=−1 /2 ground-state energy becomes equal to the
FD ground-energy level. We observed a similar effect for the
second-energy J=−1 /2 state for g=0 in Fig. 2. For nonzero
g this effect is found in the ground state. At 50 T the ground
state is 99.999% pure �0,0 ,↑� FD state. In Fig. 4 we notice

that also the lowest-energy J=−3 /2,−5 /2, . . . levels can be
identified with the spin-up FD energy levels �n , l ,s�= �0,J−
+1 /2,↑� of the lowest branch of FD levels �i.e., to LLL� in
the high field limit. Therefore, the Zeeman effect at high
magnetic field suppresses the Dresselhaus coupling induced
mixing of the different spin states of the entire low-energy
spectrum. A more analytical insight into suppression of the
Dresselhaus coupling effects for the ground state is given in
the Appendix, in which we demonstrate that the suppression
results from canceling of off-diagonal SO Hamiltonian ma-
trix elements due to the kinetic momentum and the vector
potential.

The Zeeman effect has a negligible influence on the wave
function of the lowest-energy J=1 /2 state �the energy level
plotted as the blue curve in Fig. 4�. For g=−0.44 the contri-
butions of the �0,0 ,↓� and �0,1 ,↑� FD states at 50 T are
99.785% and 0.214%, while for g=0 the contributions are
99.791% and 0.208%, respectively.

C. Rashba coupling in the presence of the Zeeman effect

The spectrum in the presence of Rashba coupling and the
Zeeman effect is shown in Fig. 5. The spectrum is similar to
the g=0 case of Fig. 1. The avoided crossing of J=−1 /2
energy levels is shifted to lower field—near 5 T as compared
to 10 T for g=0 �see Fig. 1�. At B=0 the main contribution to
the lowest-energy J=−1 /2 state is the �0,0 ,↓� FD state
which rises in energy faster when the Zeeman effect is
present. After the avoided crossing the higher energy J
=−1 /2 level can be identified with the lowest-energy FD
energy level for the spin-down orientation. In contrast to the
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FIG. 4. �Color online� Solid curves show the lowest-energy lev-
els corresponding to the total angular momentum quantum numbers
J=1 /2,−1 /2,−3 /2, . . . calculated when only Dresselhaus coupling
with 	=10.8 meV nm is present together with the Zeeman effect
with g=−0.44. The energy levels are calculated with respect to the
lowest-energy FD level. For J=−1 /2 we also show the second-
energy level �dashed curve�. The dotted curves show the FD energy
levels for a given value of l=2,1 ,0 ,−1 ,−2, . . .. The direction of the
spin is indicated for 	l	�2 FD energy levels. Dominating FD con-
tributions to J=1 /2 energy level as well as to J=−1 /2 and J=
−3 /2 at high field are also given.
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case with Dresselhaus coupling at high magnetic field the
lowest-energy levels for a given J do not coincide with the
FD spin-up energy levels �dotted lines in Fig. 5�. This indi-
cates that the lowest-energy states have nonvanishing spin-
down admixtures which preserve the presence of the SO en-
ergy shift.

D. Combined Dresselhaus, Rashba, and Zeeman effects

When both SO couplings are present, at B=0 the energy
levels are degenerate with respect to the eigenvalues of the
s-parity operator Ps. Figure 6 shows the results for �=	
=10.8 meV nm. The eigenstate for the lowest-energy odd
s-parity state which at low field corresponds mainly to
�0,0 ,↓� is shifted up in the energy due to the Zeeman effect.

Near 8 T this energy level enters into an avoided crossing
with another odd s-parity state that at low field mainly cor-
responds to the �0,−1,↑� FD configuration. The dotted
curves in the figure show the FD spectrum shifted down by
the SO coupling energy �E=−0.19 meV. In Fig. 6 we no-
tice that at the crossings of those FD energy levels that cor-
respond to the same s parity avoided crossings are found in
the SO energy spectrum. The number of avoided crossings
opened for both coupling present is therefore much larger
than in the case of pure Dresselhaus and Rashba couplings
where the avoided crossings are formed only at the crossing
of FD energy levels which correspond to the same J� total
angular momentum eigenvalues.

The gray dashed lines in Fig. 6 show the results for pure
Rashba coupling. We can see that at high field the low-
energy spectrum for �=	 becomes identical with the one for
	=0. The effect of the Dresselhaus coupling is therefore
suppressed in high magnetic field by the spin Zeeman effect
but the Rashba coupling is unaffected.

Outside the avoided crossings the SO levels remarkably
coincide with the shifted FD spectrum which indicates a
nearly constant SO coupling energy for all the states �this is
a specific feature of the �=	 case�. In the Appendix we
demonstrate that for pure Rashba or pure Dresselhaus cou-
plings the high magnetic-field limit of the ground-state SO
coupling energy is twice larger than for B=0. For �=	 at
high magnetic field with nonzero g one of the couplings is
removed, so the B→� limit of SO coupling energy is equal
to the case of pure Rashba or pure Dresselhaus coupling.
However, at B=0 both couplings contribute equally to the
SO coupling energy, hence the limits of low and high mag-
netic field of the SO coupling energy of �=	 case are equal.

IV. TWO-ELECTRON STATES

A. Results without Zeeman effect

Figure 7 shows the two-electron spectrum calculated for a
single type of SO coupling present ��=0, 	=c or equiva-
lently �=c, 	=0� for the coupling constant c
=2.7 meV nm and the Zeeman effect neglected. Energy lev-
els with a single type of SO coupling can be labeled by the
total angular momentum J quantum number �see Fig. 7�. In
the absence of SO coupling the confined electron systems in
an external magnetic field undergo ground-state orbital angu-
lar momentum transitions.19,22,35 As long as g=0, the ground-
state angular momentum takes on subsequent nonpositive
values L=0,−1,−2, . . ., for increasing B. The ground-state
orbital angular momentum without SO coupling is plotted as
the solid curve at the bottom of Fig. 7. Odd L correspond to
spin triplets and the even angular momenta to spin singlets.
The mean value of �L
 in the presence of SO coupling with
c=2.7 meV nm is shown in Fig. 7 by the dotted curve. SO
coupling lifts the degeneracy of the triplets. Each triplet level
is split by the SO coupling and the lowest energy one corre-
sponds to the lowest absolute value of J. Moreover, the
ground state corresponds always to an even value of J.

In the angular momenta L ladder without SO coupling
�see Fig. 7� we find steps corresponding to even and odd
integers which have nearly equal lengths. The SO coupling
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FIG. 5. �Color online� Same as Fig. 4 but now for pure Rashba
coupling.
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FIG. 6. �Color online� Solid lines show the low-energy spectrum
for �=	=10.8 meV nm and g=−0.44 with respect to the lowest-
energy FD level in the absence of SO coupling. The red solid �gray
solid in print version� and black solid lines correspond to −1 and 1
eigenvalues of �zP operator, respectively. The dotted curves repre-
sent the FD energy levels shifted down on the energy scale by
−0.19 meV. The dashed curves show the spectrum for pure Rashba
coupling.
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enlarges the stability range of the states that are nearly anti-
symmetric with respect to the exchange of spatial coordi-
nates of the electrons �the steps corresponding to odd values
of �L
 are enlarged�. Separate Rashba and Dresselhaus cou-
plings promote spin polarization of the ground state but in
opposite directions. In Fig. 7 we can also see that the split-
ting of subsequent ground-state triplets by the SO coupling
increases with magnetic field. This effect eventually leads to
the removal of those states from the ground state that corre-
spond to even value of L. The ground-state polarization in-
duced by the Dresselhaus �Rashba� couplings with spins an-
tiparallel �parallel� to the external magnetic-field vector is
illustrated in Fig. 8.

Figure 9 shows the spectrum for equal Dresselhaus and
Rashba coupling constants �=	=10.8 meV nm for g=0. In
this case Ps is a good quantum number while J is no longer.
For a single type of coupling both J and Ps quantum numbers
are relevant and related by Ps= �−1�J+1. Red curves �dark
gray in the print version� in Fig. 9 correspond to the odd
s-parity levels and the dashed curves to the even s-parity
levels. The spectrum when we neglect the SO coupling is
plotted with the gray dotted lines and is referred to the right
axis. Note that the spectra with and without SO coupling
nearly coincide up to a constant energy shift. The SO cou-
pling energy is similar for all the states. The SO coupling
results in the opening of avoided crossings between energy
levels which cross in the shifted FD spectrum. The inset of
Fig. 9 shows a zoom of the avoided crossing marked by the
dashed circle in the main panel. We can see that the degen-
eracy of the triplet energy levels which was split by a single
type of SO coupling is restored outside the avoided cross-
ings. This restoration is only observed for �=	.

Figure 10 shows the wave functions �real part� calculated
for four lowest-energy levels at B=0 with parameters used
above for Fig. 9. The plots are drawn for both electrons
situated at the x axis �y1=y2=0�, as function of x1 and x2.

The subsequent columns of plots in Fig. 10 correspond to the
four components of the two-electron wave function � �see
Eq. �11��. We notice that each of the spin-polarized compo-
nents ��↑↑ and �↓↓� changes sign at the diagonal of the plot
�x1=x2�, which is a result of the first and fourth components
of the vector Eq. �12� and is due to the fermion symmetry.
The second and third components of Eq. �12� indicate that a
plot for each of the spin-unpolarized wave-function compo-
nents ��↑↓ and �↓↑� can be obtained from the plot of the other
by exchange of the spatial coordinates �inversion with re-
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FIG. 7. �Color online� Low-energy spectrum for two-electron
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�Rashba or Dresselhaus� with coupling constant c=2.7 meV nm
��=c, 	=0 or �=0, 	=c� and g=0. The stepwise curves, referred
to the right axis, show the ground-state angular momentum. The
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pling. Energy levels are calculated with respect to twice the FD
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spect to the diagonal x1=x2� followed by the wave-function
sign inversion, in accordance with Fig. 10. The B=0 ground-
state wave function �the lowest row of plots in Fig. 10� has
the ↑↓ and ↓↑ components which are similar as in the singlet-
like case but it also contains both the spin-polarized compo-
nents. The avoided crossing, shown in the inset of Fig. 9,
leads to an energy gap opening between the states marked by
stars in Fig. 10. Wave functions for the anticrossing energy
levels have the ↑↓ and ↓↑ components of the similar singlet-
like form.

Let us now turn our attention to the spatial exchange op-
erator R of Eq. �13�. The mean value of this operator is
plotted in Fig. 11 for several choices of the coupling con-
stants �the values for no SO coupling are plotted with the
dotted lines�. For equal Dresselhaus and Rashba coupling
constants and g=0 the mean value of R shows oscillations
with a period nearly independent of the coupling strength.
For ��	 oscillations of �R
 disappear at high field �see the
dashed line� which is related to the approximate spin polar-
ization of the system which occurs due to domination of one
of the types of the SO coupling. Figure 12 shows the ground-
state average z component of the spin for �=0,	
=10.8 meV nm �dotted line� and �=5.4 meV nm, 	
=10.8 meV nm �solid line�. The Rashba coupling present for
�=	 /2 tends to prevent the spin-down polarization of the
ground state but its effect is weak. Moreover, similarly as
explained above for the single-electron states for g=0, the
ground-state spin polarization at high field is approximate
and not complete.

B. Role of the Zeeman effect for two electrons

Figure 13 shows the spectrum for pure Dresselhaus cou-
pling with the Zeeman effect present. At high magnetic field
the low-energy spectrum becomes identical to the spectrum
obtained for no SO coupling �the energy levels for �=	=0
are plotted by the dotted curves�. The Dresselhaus coupling
energy is therefore removed from the low-energy spectrum
similarly as previously discussed in the single-electron prob-
lem.

For pure Rashba coupling �Fig. 14� the SO effect for the
energy levels is preserved at high B. The �approximate� spin
polarization is obtained for distinctly lower field than in the
case of Dresselhaus coupling �see the plots of �Sz
 in Figs. 13
and 14�.

The spectrum when both types of SO coupling are active
��=	=10.8 meV nm� is presented in Fig. 15 by the solid
curves. At high magnetic field the low-energy spectrum tends
to the values obtained for 	=0, and �=10.8 meV, i.e., for
pure Rashba coupling—see the dotted lines in the figure.

Figure 16 shows the z component of the spin for pure
Rashba, pure Dresselhaus coupling, as well as for equal

lowest energy
odd s-parity

first excited
odd s-parity

second excited
odd s-parity

lowest-energy
even s-parity

x1

x2

FIG. 10. �Color online� Real parts of the components of the
two-electron wave function �see Eq. �11��. The contours were plot-
ted for y1=y2=0 in the �x1 ,x2� plane for �=	=10.8 meV nm at
B=0. Blue �red� regions correspond to positive �negative� values of
the wave function. The rows correspond to states with increasing
energy from the bottom to the top and the columns to components
of the two-electron wave function indicated by arrows at the top of
the plot. The stars mark the states that enter into the avoided cross-
ing shown in the inset of Fig. 9.

0 4 8 12
B [T]

-1

0

1

<R
>

α=
β=

10
.8

α=
β=

2.
7

α=
β=

5.
4

α=
β=

0

α=10.8
β=α/4

FIG. 11. �Color online� Solid curves show the ground-state ex-
pectation values of the interchange of spatial coordinates of elec-
trons for �=	 and g=0. The dotted line shows the values for no
SO coupling and the dashed line corresponds to �=4	
=10.8 meV nm �same result is obtained for 	=4�
=10.8 meV nm�.

0 4 8 12
B [T]

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

<S
z

>

β=10.8 meV nm

α=β/2

β=10.8 meV nm

α=0

g=0

FIG. 12. �Color online� Mean value of the z component of the
total spin for the ground state calculated for g=0 and pure Dressel-
haus SO coupling �dotted curve, 	=10.8 meV nm, �=0� and
dominant Dresselhaus coupling �solid curve, for �=	 /2�.

SZAFRAN et al. PHYSICAL REVIEW B 79, 235303 �2009�

235303-8



Rashba and Dresselhaus coupling constants. The inset shows
that the spin-up polarization at high field is strongest for pure
Dresselhaus coupling in spite of the fact that the Dresselhaus
term itself prefers the spin-down polarization. The polariza-
tion is due to the suppression of the Dresselhaus coupling, as
indicated by the spectra of Figs. 13 and 15. Due to the sup-
pression of the Dresselhaus type of coupling by high mag-
netic field the spin obtained for �=	 becomes identical with
the values obtained for pure Rashba coupling. For nonzero �
the spin-up polarization at high field is never complete. A
complete spin-up polarization would imply removal of the
SO coupling energy which stays of the order of 0.4 meV in
the high field limit.

Figure 17 shows a comparison of �R
 for three sets of
parameters including the ones applied in Fig. 16. For pure

Dresselhaus coupling the spin-up polarization of the ground
state occurs near 7 T �see Fig. 16�. At the spin flip the ground
state has predominantly a singletlike wave function �see the
maximum of �R
 in Fig. 17 near 7 T�. For higher field the
average R value becomes close to −1 in all the considered
cases. The zoom in the inset shows that the spatial antisym-
metry of the ground state at high field is nearly perfect only
for �=0, which corresponds to the suppression of the
Dresselhaus coupling. The values obtained for �=	 become
equal to the ones obtained for pure Rashba coupling.

Calculations of the properties of few-electron quantum
dots at high fields are often performed within the LLL
approximation.20,21,23,31 Suppression of the Dresselhaus cou-
pling by the Zeeman effect at high magnetic field has another
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consequence. As long as �=0 the two-electron ground state
at high field can be quite accurately described by the lowest
Landau level �lowest FD level� approximation. For B
�10 T and 	=10.8 meV, the overestimation of the two-
electron ground-state energy obtained in the LLL approxima-
tion is of the order of 0.01 meV. On the other hand the LLL
is definitely a bad approximation when the Rashba coupling
is present. For �=10.8 meV the energy overestimation ob-
tained in the LLL approximation is of the order of 0.4 meV.
For nonzero � already the single-electron states cannot be
correctly described without inclusion of excited Landau lev-
els �see the results of Figs. 1, 2, and 5�.

V. SUMMARY AND CONCLUSIONS

We considered stationary states in a parabolic GaAs quan-
tum dot containing a single or two electrons with the inclu-
sion of linear Rashba and Dresselhaus SO coupling terms,
for g=0 and for the bulk value of the Zeeman term g
=−0.44. The two-electron problem was solved with the con-
figuration interaction approach.

We analyzed the ground-state spin polarization induced
by SO coupling at high magnetic field. In the absence of the
Zeeman effect the magnetic field does not suppress the SO
coupling and the SO coupling energy saturates at high B. As
a consequence the ground-state spin polarization is approxi-
mate but not complete. Admixture of the contributions with
opposite spin orientation to the dominating one is necessary
to preserve the SO coupling effects at high field. Similarly,
the two-electron wave functions become only approximately
antisymmetric with respect to exchange of the electron coor-
dinates.

The strength of the Rashba coupling can be controlled by
voltages applied to gates.28,36 External electric fields may
also influence to some extent the strength of the Dresselhaus
coupling by changing the vertical extent of the wave function

but they cannot remove it. We demonstrated that Dresselhaus
coupling effects are for g�0 suppressed at high magnetic
field. For g�0 and both types of SO coupling present the
low-energy spectrum at high B tends to the one obtained for
pure Rashba coupling and the total angular momentum J+

=Lz+Sz becomes a good quantum number at high field. For
structures without inversion asymmetry the wave functions
become exactly antisymmetric with respect to the exchange
of the spatial electron coordinates. For g�0 the high mag-
netic field suppresses the Rashba SO coupling from the low-
energy states preserving the Dresselhaus type of coupling.

Approximations based on the lowest Landau level, often
used for the description of the few-electron states at high
field, are only justified at g�0 in the absence of the struc-
tural inversion asymmetry.
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APPENDIX

The purpose of this appendix is to provide a more analyti-
cal insight for suppression of the Dresselhaus coupling that
occurs at high magnetic field for g�0 in the single-electron
ground state. Approximate formulas for the spin-orbit cou-
pling energies for the ground state are also given for both
B=0 and the high magnetic-field limit.

The results for the single-electron spectra provided in this
paper were obtained with a convergent basis of Fock-Darwin
orbitals. These results were additionally verified with a non-
variational finite-difference calculation without any assump-
tion on the form of the basis. The results indicate that the
lowest-energy J= �1 /2 states can be obtained with a high
precision using only �0,0 , ↑↓�, �1,0 , ↑↓�, and �0, �1, ↑↓�
spin-orbitals. Below we provide results obtained for diago-
nalization of the SO Hamiltonians in a basis limited to these
states.

Let us first consider the J=−1 /2 states for pure Dressel-
haus coupling. For three relevant basis states

f1 = ��00

0
�, f2 = ��10

0
�, f3 = � 0

�0−1
� , �A1�

the Hamiltonian matrix has the form
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FIG. 17. �Color online� Expectation values of the R operator for
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�red line�, and for equal Rashba and Dresselhaus coupling constants
�=	=10.8 meV nm in the presence of the Zeeman effect g=
−0.44. The inset shows the zoom of the higher magnetic-field
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Diagonal elements of this matrix are equal to the FD energy levels. In the nondiagonal matrix elements that are due to the SO
coupling, the term with the elementary charge results of the contribution of the vector potential to the canonical momentum
�p=−i��+eA� and the other is due to the kinetic momentum �−i���. For B=0 the lowest eigenvalue of this matrix Hamil-
tonian is

ED
−1/2�B = 0� = 2��0 −����0�2 +

2	2

lB
2 , �A3�

which for the parameters applied in Fig. 2 equals ED
−1/2�B=0�=��0−0.094 meV in a good agreement with the full numerical

results presented therein.
In the high magnetic-field limit �h= 1

2�c and the Hamiltonian takes the form
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Note, that the f1 spin-up basis state becomes exactly decou-
pled from the other states, which results from an exact can-
celing of the kinetic momentum and vector-potential contri-
butions to the matrix elements, since for �h=�c /2 one has
1
2eBlB= �

lB
. This explains the appearance of the level with

energy equal to the Fock-Darwin ground state at high mag-
netic field
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in which the SO coupling is totally suppressed.
The other two HD

−1/2 eigenvalues for g=0 are given by
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The second term under the square root in above two formu-
las is small as compared to 1. Using the Taylor expansion
one obtains approximate expressions
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For the parameters of Fig. 2 the SO shift of the lower energy
of this states ED

−1/2�3� with respect to the FD ground state
equals −0.19 meV. This is the limit value to which the low-
est J=−1 /2 energy level tends at high B �see Fig. 2�. Note
that the high magnetic field-limit of the SO coupling energy
is twice larger than the value obtained at B=0.

The eigenvector corresponding to ED
−1/2�3;g=0� is very

close to f3 and the eigenvector for ED
−1/2�2;g=0� is nearly

equal to f2 �see Sec. III A for the numerical values of con-
tributions of FD states at high field�. These eigenvectors are
nearly spin polarized. One may then write approximate for-
mulas for nonzero g,
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For g=0 at high field the state with suppressed SO coupling
�ED

−1/2�1�� is the first excited J=−1 /2 energy level �Figs. 1
and 2�, while the lowest state corresponds to ED

−1/2�3�. For
g�0 at high field the order these two eigenvalues is ex-
changed ED

−1/2�1��ED
−1/2�3��ED

−1/2�2�. Therefore at high
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field for g�0 the lowest-energy J=−1 /2 level is the one
with suppressed SO coupling and the energy equal to the
ground FD energy level, in agreement with Fig. 4.

For J=1 /2 state an analogous analysis can be performed
with flipped spin orientation of the basis elements and in-
verted sign of the angular momentum

f1 = � 0

�00
�, f2 = � 0

�10
�, f3 = ��01

0
� �A12�

for which the matrix Hamiltonian is

HD
1/2 =


��h −
1

2
g�BB 0 −

i	

�
� �

lB
+

1

2
eBlB�

0 3��h −
1

2
g�BB −

i	

�
� �

lB
−

1

2
eBlB�

i	

�
� �

lB
+

1

2
eBlB� i	

�
� �

lB
−

1

2
eBlB� 2��h +

1

2
��c +

1

2
g�BB

� . �A13�

For B=0 this Hamiltonian is equal to HD
−1/2 which leads to

appearance of the Kramers degeneracy of J= �1 /2 energy
levels. At high field the lifting of the off-diagonal SO cou-
pling terms occurs for the second basis element, which there-
fore becomes the eigenstate of the Hamiltonian matrix with
energy

ED
1/2�2� =

3

2
��c −

1

2
g�BB , �A14�

while the other two-energy levels are

ED
1/2�1� �

��c

2
− 2

	2m�

�2 −
1

2
g�BB , �A15�

ED
1/2�3� �

3��c

2
+ 2

	2m�

�2 +
1

2
g�BB . �A16�

For g=0 at high field the lowest-energy levels for both
J= �1 /2 become degenerate ED

1/2�1�=ED
−1/2�3� with the same

limit SO coupling energy of −2 	2m�

�2 . ED
1/2�1� is the lowest

high field J=1 /2 energy level also for g=−0.44 in spite of
the fact that its spin is nearly oriented antiparallel to the
magnetic field. At high field—when the spin Zeeman energy
�linear in B� becomes larger than the SO coupling
energy—ED

1/2�1� exceeds ED
−1/2�1� and the latter state with

lifted SO coupling energy becomes the ground state �Fig. 4�.
The same analysis for the Rashba coupling produces the

same expressions for the energies only with inverted sign of
the Zeeman contributions and � constant replacing 	,

ER
−1/2�1� =

1

2
��c −

1

2
g�BB , �A17�

ER
−1/2�2� �

3��c

2
+ 2

�2m�

�2 −
1

2
g�BB , �A18�

ER
−1/2�3� �

��c

2
− 2

�2m�

�2 +
1

2
g�BB , �A19�

ER
1/2�1� �

��c

2
− 2

�2m�

�2 +
1

2
g�BB , �A20�

ER
1/2�2� =

3

2
��c +

1

2
g�BB , �A21�

ER
1/2�3� �

3��c

2
+ 2

�2m�

�2 −
1

2
g�BB . �A22�

Lifting of SO coupling at high field occurs for the eigenvalue
ER

−1/2�1� which corresponds to the spin-oriented antiparallel
to the magnetic field. The ground state for both g=0 and g
=−0.44 corresponds to ER

1/2�1� which is stabilized by both the
SO coupling and the Zeeman effect. Therefore, lifting of SO
coupling occurs not in the ground state but in the first excited
J=−1 /2 energy level �see the dashed red curve in Fig. 5
which coincides with the spin-down FD energy level�.

To conclude this appendix, we have demonstrated that at
high magnetic field both Rashba and Dresselhaus spectra
possess a J=−1 /2 energy level with suppressed SO cou-
pling. The suppression of the SO coupling effects appears as
a result of lifting of the off-diagonal matrix elements due to
an exact cancellation of terms due to the kinetic momentum
and the vector-potential contributions to the canonical mo-
mentum. For g=0 the energy level with suppressed SO cou-
pling is the first excited J=−1 /2 energy level with spin-
oriented antiparallel �Rashba� or parallel �Dresselhaus� to the
magnetic-field vector. When g�0 the state with lifted SO
coupling occurs as the single-electron ground state only for
the Dresselhaus type of coupling since the spin Zeeman
interaction—linear in B—exceeds the spin-orbit coupling en-
ergy which saturates at high B. A similar suppression of SO
coupling is also obtained for the ground state with Rashba
coupling but for g�0.
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